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Abstract

Various data assimilation schemes have been applied in studies on atmospheric CO2
inversion. An influence matrix based on the linear statistical analysis scheme can di-
agnose the impact of individual observations on a particular analysis. In this study,
to estimate the effect of CO2 observations on an analysis of surface CO2 flux, both5

the analysis sensitivity and the information content were calculated using the influence
matrix in the CarbonTracker, which is an inverse modeling system for estimating sur-
face CO2 flux based on an ensemble Kalman filter. The experimental period was from
January 2000 to December 2009. The global average self-sensitivity is 4.8 %, which
implies that the analysis extracts 4.8 % of the information from the observations and10

95.2 % from the background each assimilation cycle. Because the surface CO2 flux in
each week is optimized by five weeks of observations, the cumulative impact over five
weeks would be greater than 4.8 %. The analysis sensitivity is inversely proportional
to the number of observations used in the assimilation, which is distinctly apparent in
continuous observation categories with a sufficient number of observations. The time15

series of the globally averaged analysis sensitivities shows seasonal variations, with
greater sensitivities in summer and lower sensitivities in winter, which is attributed to
the surface CO2 flux uncertainty. The time-averaged analysis sensitivities in the North-
ern Hemisphere are greater than those in the Tropics and the Southern Hemisphere.
The information content indicates an imbalance between the observation coverage in20

North America and that in other regions. Approximately half of the total observational
information is provided by continuous observations, mainly from North America, which
indicates that continuous observations are the most informative and that comprehen-
sive coverage of additional observations in other regions is necessary to estimate the
surface CO2 flux in these areas as accurately as in North America. In addition, the25

uncertainty of the surface CO2 flux in Asia, where observations are sparse, is reduced
by assimilating five weeks of observations as opposed to one week of observations in
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North America, which indicates that a longer assimilation window with a lag is neces-
sary to optimize the surface CO2 flux in Asia.

1 Introduction

Atmospheric CO2 observations can be used to quantitatively estimate the sources and
sinks of surface carbon fluxes. Thus, atmospheric CO2 inversion studies using atmo-5

spheric CO2 observations have been conducted (Gurney et al., 2002; Ciais et al., 2010;
Peylin et al., 2013). Various studies applying state-of-the-art data assimilation meth-
ods have been carried out to estimate the surface carbon cycle at global and regional
scales. The methods employed for the atmospheric CO2 inversion studies include vari-
ational data assimilation methods (Chevallier et al., 2005, 2009a, b; Baker et al., 2006,10

2010; Basu et al., 2013), ensemble Kalman filter (EnKF) (Peters et al., 2005, 2007,
2010; Feng et al., 2009; Miyazaki et al., 2011; Kang et al., 2011, 2012; Chatterjee
et al., 2012; Kim et al., 2012, 2014), and maximum likelihood ensemble filter (Zupanski
et al., 2007; Lokupitiya et al., 2008). These studies have applied the data assimilation
method used in numerical weather prediction (NWP) to estimate surface CO2 fluxes.15

Recent studies on atmospheric CO2 inversion have focused on analyzing the differ-
ence between prior and optimized surface CO2 fluxes obtained by using new inversion
methods or observations (Chevallier et al., 2009a; Basu et al., 2013), as well as the
carbon cycle based on optimized surface CO2 fluxes. By contrast, the impact of vari-
ous atmospheric CO2 observations on the estimation of surface CO2 fluxes has rarely20

been studied. One method employed to evaluate the impact of observations on at-
mospheric CO2 inversion is the calculation of the uncertainty reduction (Peters et al.,
2005; Meirink et al., 2008; Chevallier et al., 2009b; Feng et al., 2009), which is a ra-
tio between the variances of the prior and posterior state vectors. A large uncertainty
reduction implies that observations have a large impact on the estimation of surface25

CO2 fluxes. However, the uncertainty reduction cannot measure the impact of individ-
ual observations on the estimated (i.e., analyzed) surface CO2 fluxes. Another method
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for assessing the impact of observations is to calculate the information content, which
is the amount of information obtained from observations (Rodgers, 2000). Engelen and
Stephen (2004) calculated the information content of infrared satellite sounding obser-
vations on atmospheric CO2 concentrations. To estimate the impact of simulated CO2
observations on surface flux analysis, Zupanski et al. (2007) calculated the information5

content using the information matrix in the ensemble subspace. However, similar to the
uncertainty reduction, these methods calculate the impact of all observations, rather
than calculating the impact of individual observations on surface CO2 flux analysis.

Data assimilation algorithms are fundamentally based on a linear statistical assump-
tion (Talagrand, 1997). Both sequential and variational algorithms combine background10

and observation information to estimate parameters based on the linear assumption.
According to the linear assumption, the influence matrix that measures the impact of
individual observations on estimated parameters can be calculated in the observation
space. Cardinali et al. (2004) suggested a method for calculating the influence matrix
within the general data assimilation framework and applied the method to a forecast15

model of the European Centre for Medium Weather Forecasts (ECMWF). The diago-
nal elements of the influence matrix are the analysis sensitivities (i.e., self-sensitivity),
which are proportional to the spread of the analysis and are inversely proportional to
the predetermined observation error. The trace of the diagonal elements of the influ-
ence matrix reflects the information content, which is the amount of information ex-20

tracted from observations. The influence matrix provides objective diagnostics regard-
ing the impact of observations on the analysis and hence the performance of the data
assimilation system because inaccurate observations can be identified by analyzing
the observation impact (Cardinali et al., 2004). Liu et al. (2009) suggested a method
for calculating self-sensitivity and cross-sensitivity (i.e., off-diagonal elements of the25

influence matrix) within the EnKF framework and diagnosed the relative importance
of individual observations within an observation system using the idealized Lorenz-40
model and the simplified hydrostatic model.
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Although Cardinali et al. (2004) and Liu et al. (2009) suggested methods for calculat-
ing the impact of individual observations on an analysis, their studies focused on NWP.
Therefore, the impact of individual observations on surface CO2 flux analysis has not
been diagnosed in a study on atmospheric CO2 inversion using the state-of-the-art
data assimilation method. Because the analysis is more important than the forecast in5

atmospheric CO2 inversion, the methods suggested by Cardinali et al. (2004) and Liu
et al. (2009) can be applied to diagnose the impact of observations on the analysis.

CarbonTracker is a system developed by the National Oceanic and Atmospheric Ad-
ministration (NOAA), which optimizes the surface CO2 flux by assimilating mole fraction
observations (i.e., concentration) of surface CO2 (Peters et al., 2005). CarbonTracker10

has been applied in studies on atmospheric CO2 inversion in North America (Peters
et al., 2010), Europe (Peters et al., 2010), and Asia (Kim et al., 2014). To develop
CarbonTracker for use in Asia, Kim et al. (2012) performed an experiment employing
CarbonTracker in this region and demonstrated that CarbonTracker produces optimized
surface CO2 fluxes for Asia. Kim et al. (2014) showed that the estimates of the surface15

CO2 flux are more consistent with observed CO2 concentrations in Asia when using the
nesting domain of the transport model on Asia in CarbonTracker. Zhang et al. (2013)
conducted a study on the assimilation of aircraft CO2 observations from the Com-
prehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) (Machida
et al., 2008) in Asia using CarbonTracker.20

In this study, an influence matrix is calculated in CarbonTracker to evaluate the im-
pact of mole fraction observations of CO2 on the analyzed surface CO2 fluxes. The
relative importance of each observation site and each observation site category is
evaluated by analyzing the self-sensitivity and information content, and the charac-
teristics of the self-sensitivity and information content are subsequently investigated.25

Section 2 presents the experimental framework, which includes CarbonTracker, EnKF,
observations, the methodology for calculating the influence matrix, and the experimen-
tal framework. Section 3 presents the results, and Sect. 4 provides a summary and
conclusion.
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2 Methodology

2.1 CarbonTracker

CarbonTracker is an atmospheric CO2 inversion system that estimates the surface CO2
flux consistent with CO2 observations. In CarbonTracker, the optimized flux with a 1◦×1◦

horizontal resolution is calculated by5

F (x,y ,t) = λr · Fbio(x,y ,t)+ λr · Focn(x,y ,t)+ Fff(x,y ,t)+ Ffire(x,y ,t), (1)

where Fbio(x,y ,t) is the prescribed prior biosphere flux from the Carnegie Ames Stan-
ford Approach Global Fire Emissions Database (CASA GFED) version 3.1 (van der
Werf et al., 2010); Focn(x,y ,t) is the prescribed prior ocean flux based on Jacobson
et al. (2007); Fff(x,y ,t) is the prescribed prior fossil fuel flux determined using the Car-10

bon Dioxide Information and Analysis Center (CDIAC) and the Emission Database for
Global Atmospheric Research (EDGAR) inventories; Ffire(x,y ,t) is the prescribed prior
fire flux derived from CASA GFED version 2 (van der Werf et al., 2006); and λr is the
scaling factor to be optimized in the data assimilation process, corresponding to 156
ecoregions around the globe. CarbonTracker adopts a smoother window to reflect the15

transport speed of CO2, which is based on the temporal relationship between the sur-
face CO2 flux and atmospheric CO2 observations, as found in Bruhwiler et al. (2005)
(Peters et al., 2005). For this reason, the scaling factor is optimized for five weeks of
lag, which implies that the observations made in the most recent week affect the op-
timized surface CO2 flux in the preceding four weeks. The optimization of the scaling20

factor during the data assimilation process is presented in Fig. 1. In each assimila-
tion cycle, five weeks of analysis scaling factors are estimated by observations from
the most recent week. After the fifth cycle, the scaling factor estimated by these five
weeks of observations is saved as the optimized scaling factor and used to calculate
the optimized surface CO2 flux in Eq. (1). During this process, a new mean background25

scaling factor for the next week is calculated by the estimated mean scaling factors of
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the previous two weeks using a simple dynamic model, as follows:

λb
t =

(
λa
t−2 + λa

t−1 + λp)
3

, (2)

where λb
t is a prior mean scaling factor for the new analysis week; λa

t−2 and λa
t−1 are pos-

terior mean scaling factors estimated two weeks and one week previous, respectively;
and λp is a prior value fixed as 1. Thus, the information from the previous observations5

is included in λb
t .

The TM5 model (Krol et al., 2005) is used as a transport model that calculates
model CO2 concentrations corresponding to the observed CO2 concentrations. The
TM5 model uses the surface CO2 fluxes calculated from Eq. (1) and the ECMWF me-
teorological field to calculate model CO2 concentrations and is used as the observation10

operator, which will be explained in Sect. 2.2.

2.2 Ensemble Kalman Filter

The EnKF data assimilation method used in CarbonTracker is the ensemble square
root filter (EnSRF) suggested by Whitaker and Hamill (2002). The analysis equation for
data assimilation is expressed as15

xa = Kyo + (In −KH)xb, (3)

where x
a is the n-dimensional analysis (posterior) state vector; yo is the p-dimensional

observation vector; K is the n×p dimensional Kalman gain; In is the identical matrix;
H is the linearized observation operator, which transforms the information in the model
space to the information in the observation space; and x

b is the background state20

vector. In EnSRF, the ensemble mean and perturbed state vectors are updated inde-
pendently using the following equations:

xa = xb +K(yo −Hxb), (4)

x′a
i = x′b

i − k̃Hx′b
i , (5)

25
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where x
a and x

b are mean state vectors of the analysis and background, respectively,
and x′a

i and x′b
t are perturbation state vectors of the analysis and background, respec-

tively. In CarbonTracker, the state vector corresponds to the scaling factor, as described
in Sect. 2.1. K and the reduced Kalman gain, k̃, are defined as

K = (PbHT)(HPbHT +R)−1, (6)5

k̃ = K ·α, (7)

where Pb is the background error covariance; R is the observation error covariance,
which is predefined at each observation site; and α is a scalar value that varies when-
ever each observation is used in the analysis process and is calculated as10

α =

1+

√
R

HPbHT +R

−1

, (8)

PbHT and HPbHT in Eqs. (6) and (8) can be calculated as

PHT ≈ 1
m−1

(
x′

1,x′
2, . . . ,x′

m
)
·
(
Hx′

1,Hx′
2, . . . ,Hx′

m
)T

, (9)

HPHT ≈ 1
m−1

(
Hx′

1,Hx′
2, . . . ,Hx′

m
)
·
(
Hx′

1,Hx′
2, . . . ,Hx′

m
)T

, (10)
15

where m is the number of ensembles.
To reduce the sampling error and filter divergence due to the underestimation of

background error covariance in EnSRF, the covariance localization method is used
(Houtekamer and Mitchell, 2001). Because the physical distance between the scaling
factors cannot be defined in CarbonTracker, correlations between the ensemble of the20

scaling factor and the ensemble of the model CO2 concentration are calculated, and
a statistical significance test is performed on the correlations. Then, the Kalman gain
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which has an insignificant statistical value is set to zero. This type of localization is
applied to all observation sites except for Marine Boundary Layer (MBL) sites, because
the observations at MBL sites are considered to include information on large footprints
of flux signals (Peters et al., 2007).

2.3 Influence matrix5

The influence matrix for EnKF is calculated as in Liu et al. (2009). The projection of
Eq. (1) onto the observation space becomes

Hxa = ya = HKyo + (Ip −HK)yb, (11)

where y
a is the analysis value in the observation space and the projection of the state

vector xa on the observation space. The influence matrix So, representing the sensitiv-10

ity of the analysis state vector ya to the observation vector yo (i.e., analysis sensitivity
to observation) in the observation space, is calculated as follows:

So =
∂ya

∂yo
= KTHT = R−1HPaHT, (12)

where So is proportional to the analysis error covariance and is inversely proportional
to the observation error covariance. By contrast, the analysis sensitivity to background15

is

Sb =
∂ya

∂yb
=

∂ya

∂(Hxb)
= Ip −KTHT = Ip −So, (13)

where y
b is the projection of the background on the observation space, and Ip is an

identity matrix with the size of the number of observations. Consequently, the sum of
the analysis sensitivity to observation in Eq. (12) and the analysis sensitivity to back-20

ground in Eq. (13) is one.
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Substituting Eq. (10) into Eq. (12) becomes

So = R−1HPaHT =
1

m−1
R−1(HXa)(HXa)T, (14)

where HXa is the analysis ensemble perturbation matrix in the observation space, and
the i th column of HXa is calculated as

HXa
i
∼= h

(
xa
i

)
− 1
m

m∑
i=1

h
(
xa
i

)
, (15)5

where xa
i is the i th analysis ensemble member; m is the number of ensembles (i.e.,

150); and h(·) is the linear or nonlinear observation operator. More specifically, the
diagonal elements of the influence matrix (i.e., self-sensitivity) are calculated as

So
jj =

∂ya
j

∂yo
j

=
(

1
m−1

)
1

σ2
j

m∑
i=1

(
HXa

i

)
j
×
(
HXa

i

)
j
, (16)

and the cross-sensitivity, which is the off-diagonal elements of the influence matrix, is10

calculated as

So
j l =

∂ya
l

∂yo
j

=
(

1
m−1

)
1

σ2
j

m∑
i=1

(
HXa

i

)
j
×
(
HXa

i

)
l
, (17)

where σ2
j is the error variance of the j th observation.

The information content (i.e., degrees of freedom for signal), which is a measure of
the information extracted from the observations, is calculated by the trace of the influ-15

ence matrix. As suggested by Cardinali et al. (2004), the globally averaged influence
of the observations can be calculated by averaging the global self-sensitivities as

GAI =
tr(So)
p

, (18)
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where p is the total number of observations used in each assimilation cycle. The partial
influence of a subset of observations is calculated as

PAI =

∑
i∈I

So
i i

pI
, (19)

where pI represents the number of observations in subset I , which can either be set
as specific observation types or as specific vertical and horizontal domains.5

2.4 Observations

The observations used in this study are surface CO2 mole fraction data observed at
sites distributed around the globe (Table 1 and Fig. 2). These data were observed by
NOAA, the Commonwealth Scientific and Industrial Research Organization (CSIRO),
Environment Canada (EC), the National Center for Atmospheric Research (NCAR),10

and Lawrence Berkeley National Laboratory (LBNL) (Masarie et al., 2011). Observa-
tions from three additional sites made by the Japan Meteorological Agency (JMA) are
also used in this study. The site categories and model–data mismatch values (i.e., ob-
servation error) are shown in Table 2. The model–data mismatch is determined as the
innovation χ2 in Eq. (20) becomes one at each observation site (Peters et al., 2007).15

χ2 =
(yo −Hx

b)2

HPbHT +R
, (20)

The innovation χ2 statistics for each observation site in Asia during the experimental
period are presented in Table 3. The model–data mismatch for the TAP site (Tae-ahn
peninsula, South Korea; 36.73◦ N, 126.13◦ E, 20 m) was changed from the value of
7.5 ppm used in previous studies to 5 ppm because the innovation χ2 value obtained20

using 5 ppm was closer to one. However, TAP was still included in the Difficult category
in the statistical analysis in Sect. 3. The model–data mismatches of the three JMA sites
were set to 3 ppm, as in Zhang et al. (2014).
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2.5 Experimental framework

The surface carbon flux analysis system used in this study is based on the Carbon-
Tracker 2010 release (CT2010). However, the system employed in this study is dif-
ferent from CT2010 in two aspects: first, the nesting domain of the TM5 model, with
1◦ ×1◦ horizontal resolution, is centered in Asia rather than in North America, which5

enables a more detailed analysis of the surface CO2 fluxes over Asia, as shown in Kim
et al. (2014); second, as mentioned in Sect. 2.4, three new JMA observation sites are
added in this system, which also enhances the analysis of surface CO2 fluxes over
Asia. The global horizontal resolution is 3◦×2◦, as in CT2010. The experimental period
is from 1 January 2000 to 31 December 2009. The number of ensembles is 150, and10

the scaling factor includes five weeks of lag, as in Peters et al. (2007, 2010) and Kim
et al. (2012, 2014).

3 Results

3.1 Validation

Cardinali et al. (2004) showed that the influence matrix is calculated approximately in15

the four-dimensional variational data assimilation method (4DVAR) because the analy-
sis error covariance in 4DVAR is numerically calculated by the inverse of the Hessian
matrix of the cost function. If the analysis error covariance is not calculated appro-
priately, the self-sensitivity can show a value greater than one. In contrast, the self-
sensitivity in EnKF theoretically has a value lesser than one. Nevertheless, the self-20

sensitivity in this study can have a value greater than one because the observation
operator used has nonlinearity in calculating the transport of CO2 concentrations. In
this study, only 13 observations from the total of 76 692 observations used for data
assimilation present a value greater than one. This is only 0.02 % of the total number
of observations, which implies that the calculated self-sensitivity is generally valid.25
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3.2 Self-sensitivity

3.2.1 Average self-sensitivity

Because the spatial coverage and number of observations varies during the experi-
mental period, the average self-sensitivity throughout the experimental period was an-
alyzed to evaluate the overall characteristics of the self-sensitivity at each observation5

site. As in previous studies (e.g., Peters et al., 2007, 2010; Kim et al., 2014), the results
for the year 2000 were excluded from the data analysis because 2000 is considered as
the spin-up period.

Figure 3 shows the average self-sensitivities at each observation site during the
experimental period. Different sizes of circles are used in some locations to distin-10

guish sites at the same location or at geographically close locations. In the globe,
negative correlations between the spatial density of the observation sites and the self-
sensitivities are not as apparent as those reported by Cardinali et al. (2004) and Liu
et al. (2009). Negative correlations between the spatial density of the observation sites
and the self-sensitivities are apparent in the Northern Hemisphere (NH). In particu-15

lar, some observation sites in Asia show high sensitivities and a low spatial density of
observation sites. The observation sites located in deserts, remote oceans, and high
altitude regions generally exhibit low sensitivities.

The average self-sensitivities of each observation site category over the globe, in the
NH, Tropics, and Southern Hemisphere (SH) are shown in Fig. 4. The average global20

self-sensitivity is 4.8 % (Fig. 4a), which implies that the analysis extracts 4.8 % of its
information from the observations and 95.2 % from the background each assimilation
cycle. Although the average self-sensitivity seems low, the background contains the
observation information included in the previous analysis cycle, as reported in Cardi-
nali et al. (2004). Moreover, the surface CO2 fluxes in CarbonTracker are optimized by25

five weeks of observations during the assimilation process. Therefore, the cumulative
impact over five weeks would be greater than 4.8 %, which only represents the most re-
cent week of the cycle. In the globe, the Mixed site category shows the highest average
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self-sensitivity, and the Difficult site category shows the lowest average self-sensitivity
(Fig. 4a), which is related to the model–data mismatch values shown in Table 1. The
model–data mismatch for the Mixed site category is relatively low, while that of the Dif-
ficult site category is high. Although the MBL site category has the lowest model data
mismatch, the MBL site category does not show the highest average self-sensitivity5

due to the small spread of the analysis CO2 concentrations at MBL sites. As shown
in Eq. (17), the model–data mismatch and the spread of the analysis CO2 concentra-
tions are two factors determining the self-sensitivity. Because MBL sites are located far
from strong source and sink regions of CO2, the spread of the analysis CO2 concen-
trations at these sites is small. The average self-sensitivity in the NH is 5.3 %, which10

is the highest of all global regions (Fig. 4b). Similar to the global results, the aver-
age self-sensitivity is highest for the Mixed site category, while that for the Difficult site
category is lowest. The average self-sensitivity in the Tropics is 3.6 % (Fig. 4c); the
Mixed site category shows the highest values, but they are not significantly higher than
those of other categories. In the Tropics, there is no Continuous site category. In the15

SH, the average self-sensitivity is 3.0 %, which is the lowest among the global regions
(Fig. 4d); the MBL site category shows the highest values, and there is no Continuous
site category.

3.2.2 Time series of self-sensitivity

Figure 5 shows the time series of the average self-sensitivity and number of observa-20

tions around the globe and in each region. Globally, two apparent characteristics can
be identified in the time series (Fig. 5a): first, the average self-sensitivity decreases as
the number of observations increases, showing an inversely proportional relationship;
second, there is seasonal variability in the average self-sensitivity, showing high val-
ues in summer and low values in winter. In the NH, the above two features are more25

apparent than in other regions (Fig. 5b). Because most of the observation sites are
located in the NH, characteristics of the average global self-sensitivity are mostly de-
termined by those in the NH. As the number of observations in the Tropics increases
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in the late 2000s, a slight inversely proportional relationship between the average self-
sensitivity and the number of observations appears in the Tropics (Fig. 5c). However,
the average self-sensitivity in the Tropics does not show distinct seasonal variability. In
the SH, an inverse relationship between the average self-sensitivity and the number
of observations is not clearly shown (Fig. 5d), which is due to the insufficient number5

of observations assimilated in the SH compared with the other regions. However, the
seasonal variability of the average self-sensitivity appears clearly in the SH.

Figure 6 shows the average self-sensitivity for each observation site category. Al-
though the MBL site category has the second largest number of observations, the
average self-sensitivity shows little variation with respect to time (Fig. 6a). Similarly,10

the average self-sensitivity for the Continental site category does not vary with respect
to time (Fig. 6b). The average self-sensitivity of the Mixed site category shows distinct
seasonal variation (Fig. 6c). The Continuous site category displays distinct seasonal
variability in the average self-sensitivity and an inversely proportional relationship be-
tween the average self-sensitivity and the number of observations (Fig. 6d). Because15

Continuous sites are mostly located in North America with relatively large numbers
(Fig. 2), the impact of a single observation decreases as the number of observations
increases. Therefore, the inversely proportional relationships between the average self-
sensitivity and the number of observations around the globe (Fig. 5a) and in the NH
(Fig. 5b) are mainly attributed to the Continuous site category. The Difficult site cate-20

gory shows a slight inverse relationship between the average self-sensitivity and the
number of observations (Fig. 6e).

3.2.3 Effect of the ensemble spread of the model surface CO2 flux on the
average self-sensitivity

Despite the inversely proportional relationship between the self-sensitivity and the25

number of observations in the NH time series (Fig. 5a), the average self-sensitivity
in the NH is higher than in the other regions (Fig. 4). In addition, the average self-
sensitivities in the NH and SH are greater in summer than in winter (Fig. 5). The above
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two characteristics imply that another factor in addition to the number of observations
affects the self-sensitivity. As briefly mentioned in Sect. 3.2.1, another factor that af-
fects the self-sensitivity is the spread of the analysis CO2 concentrations. Therefore,
the average standard deviations of surface CO2 fluxes are evaluated in Fig. 7 to inves-
tigate the influence of the surface CO2 flux uncertainties on the seasonal and regional5

characteristics of the self-sensitivities. The ensemble spread of the background surface
CO2 fluxes reflects the uncertainties, which are projected onto the ensemble spread of
the background and analysis CO2 concentrations (i.e., HXa in Eq. 16) by the transport
model. The uncertainties of the background surface CO2 fluxes over the terrestrial por-
tion of the NH are high in summer months (i.e., June, July, and August: JJA) (Fig. 7a)10

compared with those in winter months (i.e., December, January, and February: DJF)
(Fig. 7b). Due to the high surface CO2 flux uncertainties in North America (Fig. 7a), the
self-sensitivities in North America are not lower than those in the other regions (Fig. 3),
regardless of the large number of observations in this region. By contrast, despite the
high uncertainties of the surface CO2 fluxes in the Eurasian Boreal region, the self-15

sensitivities in this region cannot be evaluated owing to the absence of observations.
Instead, the self-sensitivities of the observation sites near the Eurasian Boreal region
show high values (Fig. 3).

The uncertainties of the optimized biosphere and ocean fluxes by one week of obser-
vations, shown in Fig. 7c and d, are reduced compared with those of the background20

fluxes, shown in Fig. 7a and b. The magnitude of the reduction of the surface CO2
flux uncertainties in North America is relatively greater than in other regions, which is
consistent with the greater self-sensitivities found in North America. By contrast, when
using five weeks of observations, the magnitude of the reduction of the surface CO2
flux uncertainties is greater in Asia than in North America (Fig. 7e and f).25

Therefore, the surface CO2 flux uncertainty is one of the components to determine
the magnitude of self-sensitivities, and the seasonal variability of the surface CO2 flux
uncertainties leads to the seasonal variation of the self-sensitivities.
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3.3 Information content

3.3.1 Average information content

Figure 8 shows the average information content at each observation site during the
experimental period. This value was calculated by averaging the ratio of information
contents for each cycle at each site during the experimental period. Note that this av-5

erage value is not the amount of information content extracted from observations but
rather the relative ratio of each site’s information content, normalized by the total in-
fluence of all observations. Because the magnitude of the information content at one
observation site is proportional to the self-sensitivity and the number of observations,
the observation sites with a high average self-sensitivity or a large number of observa-10

tions show high information content. Therefore, the observation sites located in North
America and Asia generally show high average information content.

To investigate the distribution of the information content in each region, histograms of
the average information content around the globe and in the NH, Tropics, and SH were
generated (Fig. 9). The average information content was 80.2 % in the NH, 13.3 % in15

the Tropics, and 6.5 % in the SH, which implies that the observations in the NH are
the most informative. This is due to the large number of observations and high self-
sensitivities in the NH. Around the globe, the most informative observation site category
is the Continuous category (Fig. 9a). The MBL, Continental, and Mixed site categories
show a similar magnitude of information content, but the Difficult site category shows20

the lowest information content. In the NH and for the globe as a whole, the Continuous
site category is the most informative (Fig. 9b). In the current CarbonTracker system, the
observation sites of the Continuous site category are mainly located in North America,
except for the three JMA sites, which are located in Asia. Therefore, most of the in-
formation extracted from the Continuous site category is used to constrain the surface25

CO2 fluxes of North America. In the Tropics, the MBL and Mixed site categories pro-
vide the most information (Fig. 9c). In the SH, the MBL site category provides the most
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information, but information extracted from the Continental, Mixed, and Difficult site
categories is rare (Fig. 9d).

3.3.2 Time series of information content

Figure 10 shows the time series of the weekly averaged information content for each
site category in each region. In the globe, the proportion of the information content of5

the Continuous site category increases steadily over time (Fig. 10a), which is asso-
ciated with the steady increase in the number of observations of the Continuous site
category over time. In the NH, the increase of the proportion of the information content
and the number of observations of the Continuous site category is more readily appar-
ent (Fig. 10b). Because of the high self-sensitivity in summer in the NH, the proportion10

of the information content of the Continuous category in the NH is greater in summer
than in winter. In the Tropics, the MBL and Mixed site categories provide the most infor-
mation, while the Difficult site category provides limited information from 2004 onward
(Fig. 10c) because, after this date, observations from only one Difficult observation site
(Bukit Kotobang (BKT), Indonesia: 0.2◦ S, 100.32◦ E, 864 m) are used in the data as-15

similation. In the SH, most information is extracted from observations made in the MBL
site category (Fig. 10d). Because the number of observations in the SH is much lower
than in the other regions, the information content extracted from the observations made
in this region is also lower. The information content in summer is greater than in winter
in the SH owing to the seasonal variability in self-sensitivity.20

To investigate the regional distribution of the information content in the NH, the time
series of the information contents in Asia, North America, and Europe are shown in
Fig. 11. The information content in North America is greater than that in the other re-
gions because the self-sensitivities are high and the number of observations increases
with time in North America. However, the rate of increase in the information content25

is lower than that of the number of observations because self-sensitivity decreases as
the number of observations increases in North America.
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3.3.3 Relationship between the information content and the optimized flux

Because CarbonTracker is a system that optimizes the surface CO2 flux using mea-
surements of surface CO2 concentrations, the effect of the observations on the op-
timized surface CO2 fluxes is important. To investigate the relationship between the
information content and the optimized surface CO2 fluxes, the root mean square differ-5

ences (RMSDs) between the optimized surface CO2 fluxes and the background fluxes
were calculated (Fig. 12). The surface CO2 fluxes predicted by the dynamic model in
Eq. (2) (i.e., background) show a high RMSD in the NH, with the highest values in
North America, followed by Asia (Fig. 12a). In terms of seasonal variation, the impact
of the observations in JJA is greater than in DJF (Fig. 12a and b). The large difference10

between the prior fluxes and the surface CO2 fluxes predicted by the dynamic model im-
plies that the assimilation of previous observations substantially affects the results. The
RMSD of the analyzed surface CO2 fluxes constrained by one week of observations
from the background fluxes in JJA is greater in the NH compared with the other regions.
The JJA RMSD value for North America (especially in the mid-continental region of the15

US) is the highest in the NH (Fig. 12c). Although the RMSD of North America in DJF
is lower than that in JJA, the RMSD of North America is still greater than that of other
regions in DJF (Fig. 12d). The regions with a high average information content are
consistent with the regions with a high RMSD (compare Figs. 8 and 12), which implies
that the observations from North America provide more information in the first cycle20

than those from other regions because the observations in North America are char-
acterized by high self-sensitivities and abundant observations. By contrast, the RMSD
values obtained in the first cycle in other regions are not as high as those in North
America. The RMSD in Asia and other regions increases after five weeks of optimiza-
tion (Fig. 12e and f). In particular, the magnitude of the RMSD in the Eurasian Boreal25

region increases after five weeks of optimization (Fig. 12e), which implies that, by the
transport of the CO2 concentrations, the observation information from remote regions
affects the optimization of the surface CO2 fluxes in the Eurasian Boreal region. This
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remote influence is due to the absence of observations in this region. In addition, the
five-week assimilation lag is effective in optimizing the surface CO2 flux in this region.
Therefore, a longer, smoother window is necessary to optimize the surface CO2 flux in
Asia, where there are sparse observations; this implies that in the current version of
CarbonTracker, the uncertainty of the surface CO2 flux in Asia can be reduced when5

using a longer, smoother window than that used for North America.

4 Summary and conclusion

In this study, the effect of observations of CO2 concentrations on the optimized sur-
face CO2 fluxes in CarbonTracker was evaluated by calculating the influence matrix for
a 10 year period from 2000 to 2009. CarbonTracker is a system used to optimize the10

surface CO2 flux using EnKF as a data assimilation algorithm. Most of the calculated
influence values were in the range of the theoretical limit, from 0 to 1, which makes it
possible to objectively diagnose the performance of the data assimilation system used
in this study.

The average global self-sensitivity is 4.8 %, which implies that the impact of the back-15

ground on the optimized flux is 95.2 %. The value of 4.8 % obtained in CarbonTracker
is lower than the 15 % value obtained from NWP models, as reported by Cardinali
et al. (2004) and Liu et al. (2009). However, as indicated by Cardinali et al. (2004),
the background fluxes predicted by the dynamic model already include information ex-
tracted from earlier observations used in previous cycles. Because the state vector20

used in CarbonTracker includes five weeks of lag, the cumulative impact of the obser-
vations on the analysis is greater than the impact calculated for a single assimilation
cycle. The large cumulative impact is confirmed by the RMSD of the surface CO2 fluxes
associated with each assimilation process.

The self-sensitivity and spatial coverage of the observation sites are inversely cor-25

related in the NH, while these factors are not apparently related in the Tropics and
SH. The lower correlation between the self-sensitivity and the spatial coverage of the
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observation sites in the Tropics and SH is attributed to either the sparseness of the
observation sites or the locations of the observation sites which are not appropriate
for detecting the variability of CO2 concentrations with a high temporal resolution but
are appropriate for detecting the global trend of the background CO2 concentrations.
By contrast, the observation sites near the Eurasian Boreal region show high self-5

sensitivity because there are no available observations in the Eurasian Boreal region.
The self-sensitivity time series is characterized by seasonal variations. In both hemi-

spheres, the self-sensitivity in summer is greater than in winter, which is clearly evident
in the Mixed and Continuous site categories and is associated with the background
surface CO2 flux uncertainties. The number of observations used in data assimilation10

increases over time, which causes the average self-sensitivities to decrease. The de-
creasing trend of the self-sensitivity over time for the Continuous site observations in
North America may indicate the limited impact of additional observations in this region.
Schuh et al. (2013) reported that additional tower measurements (i.e., observations in
the Continuous site category) in the Corn Belt region of the US did not significantly alter15

the surface CO2 flux estimates for 2008, which is consistent with the low self-sensitivity
detected over North America in the same period. Therefore, under the current Car-
bonTracker framework, to obtain the beneficial effect of additional observations on the
surface CO2 flux analysis, new observations should be added in regions with a low
spatial density of observation sites (e.g., Asia).20

The observation sites with a high average self-sensitivity and a small number of ob-
servations show low average information content, whereas the observation sites with
a low average self-sensitivity and a large number of observations show high average
information content. Therefore, the Continuous site category shows high average infor-
mation content. In general, the information extracted from observations is concentrated25

in the NH, especially in North America. A strong correlation exists between the infor-
mation content and the optimized surface CO2 fluxes. The high information content
found in regions with a large number of observations implies that much of the informa-
tion is extracted from observations, and as a result, the fluxes are optimized quickly
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in a relatively short period. However, the surface CO2 fluxes in regions with no local
observation sites (e.g., Siberia) are optimized by remote observations during relatively
long assimilation windows with a lag.

The effect of various observations on the analyzed surface CO2 fluxes can be cal-
culated using the method suggested in this study. More CO2 observations become5

available in data assimilation for estimating the surface CO2 fluxes. These additional
sources include CONTRAIL data, which are aircraft observations (Machida et al.,
2008); column-averaged CO2 concentrations retrieved from the Japanese Greenhouse
gases Observing SATellite (GOSAT) (Yokoda et al., 2009); and data from the Total
Carbon Column Observing Network (TCCON), which are observed by ground-based10

Fourier Transform Spectrometers (Wunch et al., 2011). As a next step, the impact of
various observations on the optimization of surface CO2 fluxes can be evaluated using
the method suggested in this study.
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Table 1. Information on the observation sites used in this study. MDM represents the model–
data mismatch, which is the observation error.

Site code Location Latitude Longitude Height Laboratory MDM

ALT_01D0 Alert, Nunavut, Canada 82.45◦ N 62.51◦ W 200 m ESRL 1.5
ALD_06C0 Alert, Nunavut, Canada 82.45◦ N 62.51◦ W 200 m ESRL 2.5
AMT_01C3 Argyle, Maine, US 45.03◦ N 68.68◦ W 50 m ESRL 3
AMT_01P0 Argyle, Maine, US 45.03◦ N 68.68◦ W 50 m ESRL 3
ASC_01D0 Ascension Island, UK 7.92◦ S 14.42◦ W 54 m ESRL 0.75
ASK_01D0 Assekrem, Algeria 23.18◦ N 5.42◦ E 2728 m ESRL 1.5
AZR_01D0 Terceira Island, Azores, Portugal 38.77◦ N 27.38◦ W 40 m ESRL 1.5
BAL_01D0 Baltic Sea, Poland 55.35◦ N 17.22◦ E 3 m ESRL 7.5
BAO_01C3 Boulder Atmospheric Observatory, Colorado, US 40.05◦ N 105.00◦ W 1584 m ESRL 3
BAO_01P0 Boulder Atmospheric Observatory, Colorado, US 40.05◦ N 105.00◦ W 1584 m ESRL 3
BKT_01D0 Bukit Kotobang, Indonesia 0.20◦ S 100.32◦ E 864 m ESRL 7.5
BME_01D0 St. Davids Head, Bermuda, UK 32.27◦ N 64.65◦ E 30 m ESRL 1.5
BMW_01D0 Tudor Hill, Bermuda, UK 32.27◦ N 64.88◦ E 30 m ESRL 1.5
BRW_01D0 Barrow, Alaska, US 71.32◦ N 156.61◦ W 11 m ESRL 1.5
BRW_01C0 Barrow, Alaska, US 71.32◦ N 156.61◦ W 11 m ESRL 2.5
BSC_01D0 Black Sea, Constanta, Romania 44.17◦ N 28.68◦ E 3 m ESRL 7.5
CBA_01D0 Cold Bay, Alaska, US 55.21◦ N 162.72◦ W 21 m ESRL 1.5
CDL_06C0 Candle Lake, Saskatchewan, Canada 53.99◦ N 105.12◦ W 600 m ESRL 3
CFA_02D0 Cape Ferguson, Queensland, Australia 19.28◦ S 147.06◦ E 184 m ESRL 2.5
CGO_01D0 Cape Grim, Tasmania, Australia 40.68◦ S 144.69◦ E 94 m ESRL 0.75
CGO_02D0 Cape Grim, Tasmania, Australia 40.68◦ S 144.69◦ E 94 m CSIRO 0.75
CHR_01D0 Christmas Island, Republic of Kiribati 1.70◦ N 157.17◦ W 3 m ESRL 0.75
CRZ_01D0 Crozet Island, France 46.45◦ S 51.85◦ E 120 m ESRL 0.75
cya_02D0 Casey, Antarctica, Australia 66.28◦ S 110.5◦ E 51 m CSIRO 0.75
EGB_06C0 Egbert, Ontario, Canada 44.23◦ N 79.78◦ W 251 m EC 3
EIC_01D0 Easter Island, Chile 27.15◦ S 109.45◦ W 50 m ESRL 7.5
ESP_06C0 Estevan Point, British Columbia, Canada 49.38◦ N 126.54◦ W 7 m EC 3
ETL_06C0 East Trout Lake, Saskatchewan, Canada 54.35◦ N 104.98◦ W 492 m EC 3
FEF_03C0 Fraser, Colorado, US 39.91◦ N 105.88◦ W 2745 m NCAR 3
FSD_06C0 Fraserdale, Canada 49.88◦ N 81.57◦ W 210 m EC 3
GMI_01D0 Mariana Islands, Guam 13.43◦ N 144.78◦ E 2 m ESRL 1.5
HBA_01D0 Halley Station, Antarctica, UK 75.58◦ S 26.50◦ W 30 m ESRL 0.75
HDP_03C0 Hidden Peak (Snowbird), Utah, US 40.56◦ N 111.65◦ W 3351 m NCAR 3
HUN_01D0 Hegyhatsal, Hungary 46.95◦ N 16.65◦ E 248 m ESRL 7.5
ICE_01D0 Storhofdi, Vestmannaeyjar, Iceland 63.40◦ N 20.29◦ W 118 m ESRL 1.5
KEY_01D0 Key Biscayne, Florida, US 25.67◦ N 80.16◦ W 3 m ESRL 2.5
KUM_01D0 Cape Kumukahi, Hawaii, US 19.52◦ N 154.82◦ W 3 m ESRL 1.5
KZD_01D0 SaryTaukum, Kazakhstan 44.06◦ N 76.82◦ E 601 m ESRL 2.5
KZM_01D0 Plateau Assy, Kazakhstan 43.25◦ N 77.88◦ E 2519 m ESRL 2.5
LEF_01C3 Park Falls, Wisconsin, US 45.95◦ N 90.27◦ W 472 m ESRL 3
LEF_01P0 Park Falls, Wisconsin, US 45.95◦ N 90.27◦ W 472 m ESRL 3
LLB_06C0 Lac La Biche, Alberta, Canada 54.95◦ N 112.45◦ W 540 m EC 3
MAA_02D0 Mawson Station, Antarctica, Australia 67.62◦ S 62.87◦ E 32 m CSIRO 0.75
MHD_01D0 Mace Head, County Galway, Ireland 53.33◦ N 9.90◦ W 5 m ESRL 2.5
MID_01D0 Sand Island, Midway, US 28.21◦ N 177.38◦ W 4 m ESRL 1.5
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Table 1. Continued.

Site code Location Latitude Longitude Height Laboratory MDM

MKN_01D0 MT. Kenya, Kenya 0.05◦ S 37.30◦ E 3897 m ESRL 2.5
MLO_01C0 Mauna Loa, Hawaii, US 19.54◦ N 155.58◦ W 3397 m ESRL 0.75
MLO_01D0 Mauna Loa, Hawaii, US 19.54◦ N 155.58◦ W 3397 m ESRL 1.5
MNM_19C0 Minamitorishima, Japan 24.29◦ N 153.98◦ E 8 m JMA 3
MQA_02D0 Macquarie Island, Australia 54.48◦ S 158.97◦ E 12 m CSIRO 0.75
NMB_01D0 Gobabeb, Namibia 23.58◦ S 15.03◦ E 456 m ESRL 2.5
NWR_01D0 Niwot Ridge, Colorado, US 40.05◦ N 105.58◦ W 3523 m ESRL 1.5
NWR_03C0 Niwot Ridge, Colorado, US 40.05◦ N 105.58◦ W 3523 m NCAR 3
OBN_01D0 Obninsk, Russia 55.11◦ N 36.60◦ E 183 m ESRL 7.5
OXK_01D0 Ochsenkopf, Germany 50.03◦ N 11.80◦ E 1022 m ESRL 2.5
PAL_01D0 Pallas-Sammaltunturi, GAW Station, Germany 67.97◦ N 24.12◦ E 560 m ESRL 2.5
POC_01D1 Pacific Ocean, N/A 0.39◦ S 132.43◦ W 10 m ESRL 0.75
PSA_01D0 Palmer Station, Antarctica, US 64.92◦ S 64.00◦ W 10 m ESRL 0.75
PTA_01D0 Point Arena, California, US 38.95◦ N 123.74◦ W 17 m ESRL 7.5
RPB_01D0 Ragged Point, Barbados 13.17◦ N 59.43◦ W 45 m ESRL 1.5
RYO_19C0 Ryori, Japan 39.03◦ N 141.82◦ E 260 m JMA 3
SCT_01C3 Beech Island, South Carolina, US 33.41◦ N 81.83◦ W 115 m ESRL 3
SEY_01D0 Mahe Island, Seychelles 4.67◦ S 55.17◦ E 3 m ESRL 0.75
SGP_01D0 Southern Great Plains, Oklahoma, US 36.80◦ N 97.50◦ W 314 m ESRL 2.5
SGP_64C3 Southern Great Plains, Oklahoma, US 36.80◦ N 97.50◦ W 314 m ESRL 3
SHM_01D0 Shemya Island, Alaska, US 52.72◦ N 174.10◦ E 40 m ESRL 2.5
SMO_01C0 Tutuila, American Samoa 14.25◦ S 170.56◦ W 42 m ESRL 0.75
SMO_01D0 Tutuila, American Samoa 14.25◦ S 170.56◦ W 42 m ESRL 1.5
SNP_01C3 Shenandoah National Park, US 38.62◦ N 78.35◦ W 1008 m ESRL 3
SPL_01C3 Storm Peak Laboratory (Desert Research Institute), US 40.45◦ N 106.73◦ W 3210 m NCAR 3
SPO_01C0 South Pole, Antarctica, US 89.98◦ S 24.80◦ W 2810 m ESRL 0.75
SPO_01D0 South Pole, Antarctica, US 89.98◦ S 24.80◦ W 2810 m ESRL 1.5
STM_01D0 Ocean Station M, Norway 66.00◦ N 2.00◦ E 0 m ESRL 1.5
STR_01P0 Sutro Tower, San Francisco, California, US 37.76◦ N 122.45◦ W 254 m ESRL 3
SUM_01D0 Summit, Greenland 72.57◦ N 38.48◦ W 3238 m ESRL 1.5
SYO_01D0 Syowa Station, Antarctica, Japan 69.00◦ S 39.58◦ E 11 m ESRL 0.75
TAP_01D0 Tae-ahn Peninsula, Republic of Korea 36.73◦ N 126.13◦ E 20 m ESRL 5
TDF_01D0 Tierra Del Fuego, Ushuaia, Argentina 54.87◦ S 68.48◦ W 20 m ESRL 0.75
THD_01D0 Trinidad head, California, US 41.73◦ N 91.35◦ W 107 m ESRL 2.5
UTA_01D0 Wendover, Utah, US 39.90◦ N 113.72◦ W 1320 m ESRL 2.5
UUM_01D0 Ulaan Uul, Mongolia 44.45◦ N 111.10◦ E 914 m ESRL 2.5
WBI_01C3 West Branch, Iowa, US 41.73◦ N 91.35◦ W 242 m ESRL 3
WBI_01P0 West Branch, Iowa, US 41.73◦ N 91.35◦ W 242 m ESRL 3
WGC_01C3 Walnut Grove, California, US 38.27◦ N 121.49◦ W 0 m ESRL 3
WGC_01P0 Walnut Grove, California, US 38.27◦ N 121.49◦ W 0 m ESRL 3
WIS_01D0 WIS Station, Negev Desert, Israel 31.13◦ N 34.88◦ E 400 m ESRL 2.5
WKT_01C3 Moody, Texas, US 31.32◦ N 97.33◦ W 251 m ESRL 3
WKT_01C3 Moody, Texas, US 31.32◦ N 97.33◦ W 251 m ESRL 3
WLG_01D0 Mt. Waliguan, Peoples Republic of China 36.29◦ N 100.90◦ E 3810 m ESRL 1.5
WSA_06C0 Sable Island, Nova Scotia, Canada 49.93◦ N 60.02◦ E 5 m EC 3
YON_19C0 Yonagunijima, Japan 24.47◦ N 123.02◦ E 30 m JMA 3
ZEP_01D0 Ny-Alesund, Svalbard, Norway and Sweden 78.90◦ N 11.88◦ E 475 m ESRL 1.5
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Table 2. Observation site categories and corresponding model–data mismatch values [ppm].

Observation category Description Observation Model–data
frequency mismatch [ppm]

Marine Boundary Observation site close Once a week 0.75
Layer (MBL) to Marine boundary layer
Mixed land/ocean Observation site located in Once a week 1.5
and mountain (Mixed) mixed land, ocean, and mountain
Continental Observation site located in Once a week 2.5

the continent
Continuous Observation site with Once a day 3

continuous observations
Difficult Difficult Once a week 7.5 (5.0)
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Table 3. Information on the observation sites located in Asia, including the number of observa-
tions, number of rejected observations, MDM values, innovation χ2 statistics, and the average
bias of the model CO2 concentrations calculated by optimized fluxes. For the TAP_01D0 site,
the numbers in parentheses are values used in previous studies, and the numbers without
parentheses are the modified values based on the innovation χ2 statistics in this study.

Site name Number of Number of reject- MDM Innovation Bias of model CO2

observations ed observations χ2 concentration

BKT_01D0 207 0 7.5 0.57 −4.01
KZD_01D0 430 11 2.5 1.25 −0.4
KZM_01D0 384 9 2.5 1.22 −0.67
MNM_19C0 3304 0 3 0.16 −0.45
RYO_19C0 3149 108 3 0.53 −0.9
TAP_01D0 339 10 5 0.59 0.01

(269) (3) (7.5) (0.37) (−0.26)
UUM_01D0 454 10 2.5 1.03 0.26
WIS_01D0 489 3 2.5 0.72 −0.15
WLG_01D0 347 10 1.5 1.14 0.04
YON_19C0 2947 8 3 0.53 −0.9
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 1 

 2 

Figure 1. Schematic diagram of the assimilation process employed in CarbonTracker. In each 3 

analysis cycle, observations made within one week are used to update the state vectors with a 4 

five-week lag. The dashed line indicates how the simple dynamic model uses analysis state 5 

vectors from the previous one and two weeks to produce a new background state vector for 6 

the current analysis time. The TM5 model is used as the observation operator to calculate the 7 

model CO2 concentration for each corresponding observation location and time. 8 

9 

Figure 1. Schematic diagram of the assimilation process employed in CarbonTracker. In each
analysis cycle, observations made within one week are used to update the state vectors with
a five-week lag. The dashed line indicates how the simple dynamic model uses analysis state
vectors from the previous one and two weeks to produce a new background state vector for
the current analysis time. The TM5 model is used as the observation operator to calculate the
model CO2 concentration for each corresponding observation location and time.
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Figure 2. Observation network of CO2 concentrations around the globe and the nested domain 3 

of the TM5 transport model over Asia (dashed box). Each observation site is assigned to 4 

different categories (△: MBL; ○: Continental; ◇: Mixed land/ocean and mountain; ☆: 5 

Continuous; □: Difficult). 6 

7 

Figure 2. Observation network of CO2 concentrations around the globe and the nested domain
of the TM5 transport model over Asia (dashed box). Each observation site is assigned to differ-
ent categories (4: MBL; ©: continental;
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Figure 2. Observation network of CO2 concentrations around the globe and the nested domain 3 

of the TM5 transport model over Asia (dashed box). Each observation site is assigned to 4 

different categories (△: MBL; ○: Continental; ◇: Mixed land/ocean and mountain; ☆: 5 

Continuous; □: Difficult). 6 
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: mixed land/ocean and mountain;
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Figure 2. Observation network of CO2 concentrations around the globe and the nested domain 3 

of the TM5 transport model over Asia (dashed box). Each observation site is assigned to 4 

different categories (△: MBL; ○: Continental; ◇: Mixed land/ocean and mountain; ☆: 5 

Continuous; □: Difficult). 6 

7 

: continuous; �:
difficult).
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Figure 3. Average self-sensitivity at each observation site from 2000 to 2009. The 3 

overlapping observation sites at the same locations or at close locations are distinguished by 4 

different sizes of circles. 5 

6 

Figure 3. Average self-sensitivity at each observation site from 2000 to 2009. The overlapping
observation sites at the same locations or at close locations are distinguished by different sizes
of circles.
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Figure 4. Histograms of the average self-sensitivity for each observation site category from 3 

2000 to 2009 (a) around the globe and in the (b) Northern Hemisphere, (c) Tropics, and (d) 4 

Southern Hemisphere. N(obs) in the upper right corner represents the number of observations 5 

used in data assimilation. 6 

7 

Figure 4. Histograms of the average self-sensitivity for each observation site category from
2000 to 2009 (a) around the globe and in the (b) Northern Hemisphere, (c) Tropics, and
(d) Southern Hemisphere. N(obs) in the upper right corner represents the number of obser-
vations used in data assimilation.
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Figure 5. Time series of the average self-sensitivity (red solid line with blue dots) and the 3 

number of observations (black solid line) with a weekly temporal resolution (a) around the 4 

globe and in the (b) Northern Hemisphere, (c) Tropics, and (d) Southern Hemisphere from 5 

2000 to 2009. The dashed lines represent the regression lines for the average self-sensitivity 6 

(red dashed line) and the number of observations (black dashed line). 7 

8 

Figure 5. Time series of the average self-sensitivity (red solid line with blue dots) and the
number of observations (black solid line) with a weekly temporal resolution (a) around the
globe and in the (b) Northern Hemisphere, (c) Tropics, and (d) Southern Hemisphere from
2000 to 2009. The dashed lines represent the regression lines for the average self-sensitivity
(red dashed line) and the number of observations (black dashed line).
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Figure 6. Time series of the average self-sensitivity (red solid line with blue dots) and the 3 

number of observations (black solid line) with a weekly temporal resolution for the (a) MBL, 4 

(b) Continental, (c) Mixed, (d) Continuous, and (e) Difficult observation site categories from 5 

2000 to 2009. The dashed lines represent the regression lines for the average self-sensitivity 6 

(red dashed line) and the number of observations (black dashed line). 7 

8 

Figure 6. Time series of the average self-sensitivity (red solid line with blue dots) and the
number of observations (black solid line) with a weekly temporal resolution for the (a) MBL,
(b) Continental, (c) Mixed, (d) Continuous, and (e) Difficult observation site categories from
2000 to 2009. The dashed lines represent the regression lines for the average self-sensitivity
(red dashed line) and the number of observations (black dashed line).
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Figure 7. Average standard deviation of background biosphere and ocean fluxes in (a) JJA 3 

and (b) DJF; the posterior biosphere and ocean fluxes optimized by one-week observations in 4 

(c) JJA and (d) DJF; and the posterior biosphere and ocean fluxes optimized by five weeks of 5 

observations in (e) JJA and (f) DJF. The units are g C m-2 week-1. 6 

7 

Figure 7. Average standard deviation of background biosphere and ocean fluxes in (a) JJA
and (b) DJF; the posterior biosphere and ocean fluxes optimized by one-week observations in
(c) JJA and (d) DJF; and the posterior biosphere and ocean fluxes optimized by five weeks of
observations in (e) JJA and (f) DJF. The units are g C m−2 week−1.
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Figure 8. Average normalized information content for each observation site from 2000 to 3 

2009. The overlapping observation sites at the same locations or at close locations are 4 

distinguished using different sizes of circles. 5 

6 

Figure 8. Average normalized information content for each observation site from 2000 to 2009.
The overlapping observation sites at the same locations or at close locations are distinguished
using different sizes of circles.
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Figure 9. Histograms of the average information content for each observation site category (a) 3 

around the globe and in the (b) Northern Hemisphere, (c) Tropics, and (d) Southern 4 

Hemisphere from 2000 to 2009. N(obs) in the upper right corner represents the number of 5 

observations used in data assimilation. 6 

7 

Figure 9. Histograms of the average information content for each observation site category
(a) around the globe and in the (b) Northern Hemisphere, (c) Tropics, and (d) Southern Hemi-
sphere from 2000 to 2009. N(obs) in the upper right corner represents the number of observa-
tions used in data assimilation.
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Figure 10. Time series of the average information content for each observation site category 3 

(a) around the globe and in the (b) Northern Hemisphere, (c) Tropics, and (d) Southern 4 

Hemisphere from 2000 to 2009. 5 

6 

Figure 10. Time series of the average information content for each observation site category
(a) around the globe and in the (b) Northern Hemisphere, (c) Tropics, and (d) Southern Hemi-
sphere from 2000 to 2009.
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Figure 11. Times series of the (a) weekly averaged information content and (b) number of 3 

observations in Asia (black line), Europe (blue line), and North America (red line) from 2000 4 

to 2009. 5 

6 

Figure 11. Times series of the (a) weekly averaged information content and (b) number of
observations in Asia (black line), Europe (blue line), and North America (red line) from 2000 to
2009.
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Figure 12. Root mean square difference (RMSD) between the background flux and prior flux 3 

in (a) JJA and (b) DJF; RMSD between the background flux and posterior flux optimized by 4 

one-week observations in (c) JJA and (d) DJF; and RMSD between the background flux and 5 

posterior flux optimized by five weeks of observations in (e) JJA and (f) DJF. The units are g 6 

C m-2 week-1. 7 

Figure 12. Root mean square difference (RMSD) between the background flux and prior flux
in (a) JJA and (b) DJF; RMSD between the background flux and posterior flux optimized by
one-week observations in (c) JJA and (d) DJF; and RMSD between the background flux and
posterior flux optimized by five weeks of observations in (e) JJA and (f) DJF. The units are
g C m−2 week−1.
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